Search results for "phononic crystals and metamaterials"

showing 1 items of 1 documents

Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide

2018

The quest for large and low-frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, and to seismic wave abatement. For this purpose, a plethora of complex architectures (including multiphase materials) and multiphysics approaches have been proposed in the past, often involving difficulties in their practical realization. To address the issue of proposing a material design that enables large band gaps using a simple configuration, in this study we propose an easy-to-manufacture design able to open large, low-frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stif…

scanning laser Doppler vibrometerAbsorption (acoustics)Materials scienceBand gapAcousticsMaterials Science (miscellaneous)Vibration control02 engineering and technologyLow frequencyLamb band gaplcsh:Technology01 natural sciencesNoise (electronics)finite element simulationsLamb wavesphononic crystals and metamaterials; Lamb band gap; guided waves; finite element simulations; scanning laser Doppler vibrometer0103 physical sciencesCenter frequency010306 general physicsComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]guided waveslcsh:TIsotropyFinite element simulations; Guided waves; Lamb band gap; Phononic crystals and metamaterials; Scanning laser Doppler vibrometerphononic crystals and metamaterials021001 nanoscience & nanotechnology0210 nano-technology
researchProduct